17 research outputs found

    A radiomics approach to analyze cardiac alterations in hypertension

    Full text link
    Hypertension is a medical condition that is well-established as a risk factor for many major diseases. For example, it can cause alterations in the cardiac structure and function over time that can lead to heart related morbidity and mortality. However, at the subclinical stage, these changes are subtle and cannot be easily captured using conventional cardiovascular indices calculated from clinical cardiac imaging. In this paper, we describe a radiomics approach for identifying intermediate imaging phenotypes associated with hypertension. The method combines feature selection and machine learning techniques to identify the most subtle as well as complex structural and tissue changes in hypertensive subgroups as compared to healthy individuals. Validation based on a sample of asymptomatic hearts that include both hypertensive and non-hypertensive cases demonstrate that the proposed radiomics model is capable of detecting intensity and textural changes well beyond the capabilities of conventional imaging phenotypes, indicating its potential for improved understanding of the longitudinal effects of hypertension on cardiovascular health and disease

    Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

    Full text link
    The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more 20 comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies 25 proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques 30 available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of 35 medical imaging applications on the future of healthcare.Comment: Paper under revie

    Virtual cochlear electrode insertion via parallel transport frame

    Get PDF
    International audienceWe present an automatic, fast and parametrizable algorithm to perform the virtual insertion of a cochlear electrode array into a pre-existent mesh of the human cochlea. Our method reorients the electrode according to the parallel transport frame, a local parameterization of the cochlear centerline directions, robust to the centerline curvature changes. It allows to control the initial roll angle and the extension of insertion from full to partial. Such a virtual insertion, chained with finite element simulations on the electrical activity of the electrode and the cochlear nerves, will enable to test in silico the effects of implant design and positioning on a given patient, and optimize these parameters accordingly

    Automatic extraction of femur contours from calibrated fluoroscopic images

    Get PDF
    Automatic identification and extraction of bone contours from X-ray images is an essential first step task for further medical image analysis. In this paper we propose a 3D statistical model based framework for the proximal femur contour extraction from calibrated X-ray images. The automatic initialization is solved by an estimation of Bayesian network algorithm to fit a multiple component geometrical model to the X-ray data. The contour extraction is accomplished by a non-rigid 2D/3D registration between a 3D statistical model and the X-ray images, in which bone contours are extracted by a graphical model based Bayesian inference. Preliminary experiments on clinical data sets verified its validit

    An integrated approach for reconstructing surface models of the proximal femur from sparse input data for surgical navigation

    No full text
    A patient-specific surface model of the proximal femur plays an important role in planning and supporting various computer-assisted surgical procedures including total hip replacement, hip resurfacing, and osteotomy of the proximal femur. The common approach to derive 3D models of the proximal femur is to use imaging techniques such as computed tomography (CT) or magnetic resonance imaging (MRI). However, the high logistic effort, the extra radiation (CT-imaging), and the large quantity of data to be acquired and processed make them less functional. In this paper, we present an integrated approach using a multi-level point distribution model (ML-PDM) to reconstruct a patient-specific model of the proximal femur from intra-operatively available sparse data. Results of experiments performed on dry cadaveric bones using dozens of 3D points are presented, as well as experiments using a limited number of 2D X-ray images, which demonstrate promising accuracy of the present approach

    Estimation of the partial volume effect in MRI

    No full text
    The partial volume effect (PVE) arises in volumetric images when more than one tissue type occurs in a voxel. In such cases, the voxel intensity depends not only on the imaging sequence and tissue properties, but also on the proportions of each tissue type present in the voxel. We have demonstrated in previous work that ignoring this effect by establishing binary voxel-based segmentations introduces significant errors in quantitative measurements, such as estimations of the volumes of brain structures. In this paper, we provide a statistical estimation framework to quantify PVE and to propagate voxel-based estimates in order to compute global magnitudes, such as volume, with associated estimates of uncertainty. Validation is performed on ground truth synthetic images and MRI phantoms, and a clinical study is reported. Results show that the method allows for robust morphometric studies and provides resolution unattainable to date

    Statistical shape analysis via principal factor analysis

    Get PDF
    Statistical shape analysis techniques commonly employed in the medical imaging community, such as active shape models or active appearance models, rely on principal component analysis (PCA) to decompose shape variability into a reduced set of interpretable components. In this paper we propose principal factor analysis (PFA) as an alternative and complementary tool to PCA providing a decomposition into modes of variation that can be more easily interpretable, while still being a linear efficient technique that performs dimensionality reduction (as opposed to independent component analysis, ICA). The key difference between PFA and PCA is that PFA models covariance between variables, rather than the total variance in the data. The added value of PFA is illustrated on 2D landmark data of corpora callosa outlines. Then, a study of the 3D shape variability of the human left femur is performed. Finally, we report results on vector-valued 3D deformation fields resulting from non-rigid registration of ventricles in MRI of the brain
    corecore